INTRODUCCIÓN A LOS ANÁLISIS ESTADÍSTICOS EN R

INTRODUCCIÓN A LOS ANÁLISIS ESTADÍSTICOS EN R

CARRASCO RIBELLES

20,85 €
IVA incluido
En estoc
Editorial:
MARCOMBO
Año de edición:
2022
Materia
Informatica
ISBN:
978-84-267-3544-7
Páginas:
230
Encuadernación:
Rústica
20,85 €
IVA incluido
En estoc
Añadir a favoritos

Índice general i
Preámbulo v
1 Generación de conocimiento a partir de datos 1
1.1 Datos, información y conocimiento . . . . . . . . . . . . . . . . . 1
1.2 Métodos estadísticos . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Inferencia estadística: población, muestra e incertidumbre asociada 3
2 Instalación y primeros pasos en R 5
2.1 R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Instalación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Instalación de R . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Instalación e introducción a RStudio . . . . . . . . . . . . . . . 7
2.2.3 Instalando paquetes . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Importación y exportación de datos . . . . . . . . . . . . . . . . 11
2.3.1 Utilizando el importador . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Utilizando comandos . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Datos online . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Datos precargados . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Exportación . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 tidyverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Análisis exploratorio de datos 19
3.1 Análisis exploratorio de datos . . . . . . . . . . . . . . . . . . . 19
3.2 Primer vistazo al conjunto de datos . . . . . . . . . . . . . . . . 20
3.3 Conceptos básicos . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Crear subconjuntos de datos . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Subconjuntos de variables . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Subconjuntos de registros . . . . . . . . . . . . . . . . . . . . 26
3.5 El concepto de frecuencia . . . . . . . . . . . . . . . . . . . . . . 28
3.5.1 Conceptos . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.2 Tablas de frecuencia . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.3 Histogramas . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.4 Funciones de densidad . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Describiendo las distribuciones . . . . . . . . . . . . . . . . . . . 35
3.6.1 Campana de Gauss . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.2 Medidas de posición . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.3 Medidas de variabilidad . . . . . . . . . . . . . . . . . . . . . 39
3.6.4 Medidas de forma . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Visualización de datos . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7.1 Gráfico de barras . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7.2 Boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7.3 Scatterplot . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7.4 Pie chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7.5 Combinar gráficos . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7.6 Exportar gráficos . . . . . . . . . . . . . . . . . . . . . . . . 52
4 La distribución normal 53
4.1 Las distribuciones de probabilidad de los datos . . . . . . . . . . 53
4.2 La distribución normal . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 La distribución normal tipificada . . . . . . . . . . . . . . . . . . 56
4.4 Análisis de normalidad . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 Q-Q plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Otras distribuciones . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.1 Distribuciones discretas . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Distribuciones continuas . . . . . . . . . . . . . . . . . . . . . 63
5 Contraste de hipótesis 67
5.1 Inferencia estadística . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Contrastes de hipótesis . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Metodología científica . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Definición y formulación de hipótesis . . . . . . . . . . . . . . . 72
5.5 P-valor y nivel de significación . . . . . . . . . . . . . . . . . . . 72
5.6 Errores tipo I y tipo II . . . . . . . . . . . . . . . . . . . . . . . 73
5.7 Contraste unilateral y bilateral . . . . . . . . . . . . . . . . . . . 75
5.9 Ejemplo práctico . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.10 Tamaño de efecto, poder estadístico y tamaño de muestra . . . . 78
5.10.1 Tamaño de efecto . . . . . . . . . . . . . . . . . . . . . . . . 79
5.10.2 Poder estadístico . . . . . . . . . . . . . . . . . . . . . . . . 79
5.10.3 Calculando el tamaño de la muestra . . . . . . . . . . . . . . . 80
6 Test estadísticos 83
6.1 Métodos de contraste de hipótesis . . . . . . . . . . . . . . . . . 83
6.2 Contrastes de una variable . . . . . . . . . . . . . . . . . . . . . 86
6.2.1 Contraste para una proporción . . . . . . . . . . . . . . . . . . 86
6.2.2 Contraste para una media . . . . . . . . . . . . . . . . . . . . 89
6.2.3 Contraste para una varianza . . . . . . . . . . . . . . . . . . . 92
6.3 Contraste para proporciones de más de una variable . . . . . . . 94
6.3.1 Test de independencia Chi-cuadrado . . . . . . . . . . . . . . . 94
6.3.2 Test McNemar . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4 Contraste para medias: test de una variable y dos condiciones . 101
6.4.1 t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.2 t-test pareado . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4.3 Wilcoxon-Mann-Whitney test . . . . . . . . . . . . . . . . . . 108
6.4.4 Wilcoxon signed rank test (pareado) . . . . . . . . . . . . . . . 110
6.5 Contraste para medias: test de una variable con más de dos condiciones . . . . . . . . . . 112
6.5.1 ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5.2 Comparación múltiple: análisis post hoc . . . . . . . . . . . . . 118
6.5.3 ANOVA de medidas repetidas . . . . . . . . . . . . . . . . . . 122
6.5.4 Kruskal-Wallis . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5.5 Friedman . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.6 Contraste para medias: test de una variable y más de un factor 131
6.6.1 ANOVA (two-way) . . . . . . . . . . . . . . . . . . . . . . . 131
6.7 Visualización de contraste de medias . . . . . . . . . . . . . . . 137
6.8 Contraste para varianzas: análisis de la homocedasticidad . . . . 138
6.8.1 Test de Levene . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.9 Bondad de ajuste: análisis de la normalidad . . . . . . . . . . . 141
6.9.1 Test Kolmogorov-Smirnov . . . . . . . . . . . . . . . . . . . . 142
6.9.2 Test Shapiro-Wilk . . . . . . . . . . . . . . . . . . . . . . . . 144
6.9.3 ¿Qué test de bondad de ajuste utilizar? . . . . . . . . . . . . . 144
6.10 Categorizando variables cuantitativas . . . . . . . . . . . . . . . 145
7 Correlaciones y regresión lineal 149
7.1 La relación de variables cuantitativas . . . . . . . . . . . . . . . 149
7.2 Correlación lineal . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2.1 Correlación y causalidad . . . . . . . . . . . . . . . . . . . . . 151
7.2.2 Covarianza y coeficientes de correlación . . . . . . . . . . . . . 151
7.2.3 Contraste de correlación . . . . . . . . . . . . . . . . . . . . . 152
7.2.4 Coeficiente de Pearson . . . . . . . . . . . . . . . . . . . . . . 153
7.2.5 Coeficiente de Spearman . . . . . . . . . . . . . . . . . . . . . 153
7.2.6 Ejemplo de aplicación . . . . . . . . . . . . . . . . . . . . . . 154
7.3 Regresión lineal simple . . . . . . . . . . . . . . . . . . . . . . . 157
7.3.1 Formulación . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.3.2 Coeficientes de regresión . . . . . . . . . . . . . . . . . . . . . 158
7.3.3 Análisis de la precisión del modelo . . . . . . . . . . . . . . . . 160
7.3.4 Inferencia y estimación . . . . . . . . . . . . . . . . . . . . . 164
7.3.5 Condiciones necesarias . . . . . . . . . . . . . . . . . . . . . 165
7.3.6 Ejemplo de aplicación . . . . . . . . . . . . . . . . . . . . . . 166
7.4 Regresión lineal múltiple . . . . . . . . . . . . . . . . . . . . . . 169
7.4.1 Formulación . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.4.2 Coeficientes de regresión . . . . . . . . . . . . . . . . . . . . . 170
7.4.3 Análisis de la precisión del modelo . . . . . . . . . . . . . . . . 170
7.4.4 Significación global del modelo . . . . . . . . . . . . . . . . . . 171
7.4.5 Condiciones necesarias . . . . . . . . . . . . . . . . . . . . . 171
7.4.6 Ejemplo de aplicación . . . . . . . . . . . . . . . . . . . . . . 173
7.4.7 Inclusión de variables categóricas . . . . . . . . . . . . . . . . 176
7.4.8 Interacciones entre variables . . . . . . . . . . . . . . . . . . . 181
7.4.9 Regresión polinómica . . . . . . . . . . . . . . . . . . . . . . 183
7.4.10 Selección de variables independientes . . . . . . . . . . . . . . . 187
7.4.11 Validación y test . . . . . . . . . . . . . . . . . . . . . . . . 191
8 Detección de valores atípicos y faltantes 199
8.1 Valores que pueden invalidar el análisis . . . . . . . . . . . . . . 199
8.2 Valores atípicos u outliers . . . . . . . . . . . . . . . . . . . . . 200
8.2.1 Detección univariante . . . . . . . . . . . . . . . . . . . . . . 201
8.2.2 Detección multivariante . . . . . . . . . . . . . . . . . . . . . 206
8.3 Valores faltantes . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.3.1 Descripción y visualización . . . . . . . . . . . . . . . . . . . 210
8.3.2 Imputación . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Bibliografía 219

La estadística es una herramienta esencial para extraer un conocimiento riguroso a partir del análisis de datos, tanto para la toma de decisiones empresariales como para la investigación científica. Sin embargo, su aprendizaje a menudo se hace tedioso, y es común perderse en la notación matemática o los conceptos teóricos. En este libro encontrará una introducción a los métodos estadísticos desde una perspectiva eminentemente práctica y actualizada. Está destinado a cualquier estudiante, investigador o profesional que necesite aplicar análisis estadísticos en un conjunto de datos, independientemente de su naturaleza. Los conceptos teóricos se presentan utilizando la menor notación matemática posible mediante descripciones intuitivas. Cada capítulo incluye ejemplos prácticos de análisis con el código y los datos necesarios para implementar los análisis presentados en R sin necesidad de tener conocimientos previos de programación. Gracias a la lectura de este libro, asimilará y aprenderá a realizar técnicas de estadística descriptiva, y a aplicar los principales métodos de contraste de hipótesis, paramétricos y no paramétricos, así como correlaciones y regresiones, además de la forma de tratar los datos anómalos y los faltantes, en un programa informático de referencia en estadística como es R. Con todo ello, esta es una guía completa que le permitirá minimizar la curva de aprendizaje y adquirir la seguridad necesaria para identificar el análisis estadístico apropiado en cada caso y realizarlo con éxito. Javier Marín Morales es doctor en Tecnologías para la Salud y el Bienestar, investigador en el Instituto de Investigación e Innovación en Bioingeniería (Universitat Politècnica de València, UPV) y colaborador docente en el Departamento de Estadística e Investigación Operativa Aplicadas y Calidad (UPV). Lucía Amalia Carrasco Ribelles tiene un Máster en Ciencia de Datos y es investigadora en la Fundación Instituto Universitario para la Investigación en Atención Primaria de Salud Jordi Gol i Gurina (IDIAPJGol). Ambos autores han publicado numerosos artículos en revistas científicas y tienen amplia experiencia en R.

Artículos relacionados

  • MACHINE LEARNING CON PYTORCH Y SCIKIT LEARN
    RASCHKA SEBASTIAN
    Si busca un manual de referencia sobre Machine Learning y Deep Learning con PyTorch, ha llegado al libro indicado. En él se explica paso a paso cómo construir sistemas de aprendizaje automático con éxito. Mientras que en algunos libros solo se enseña a seguir instrucciones, en este descubrirá los principios para crear modelos y aplicaciones por sí mismo. Encontrará multitud de ...
    En estoc

    42,60 €

  • ADMINISTRACION DE SERVICIOS WEB ANATOMIA DEL INTERNET
    PICADO CORAO
    Administración de servicios web es el libro ideal para entender cómo funcionan un sitio web y el Internet en general. Aborda los conceptos más importantes sobre el Internet en la actualidad, desde lainfraestructura que está detrás del hospedaje de un sitio web hasta el funcionamiento de los servicios y protocolos que se ven involucrados desde que el usuario solicita dicho sitio...
    En estoc

    14,80 €

  • GRAN LIBRO DE KOTLIN PARA PROGRAMADORES DE BACK END
    CRIADO-FERNÁNDEZ, LUÍS
    Si como programador de back end quiere evolucionar al mismo tiempo que aprovechar todo su código en Java, sin duda, debe empezar por adoptar Kotlin, un nuevo lenguaje de programación, equiparado a Java en el mundo Android. Emplear profesionalmente un nuevo lenguaje de programación puede ser un problema en la empresa en la que trabaja, sobre todo si se tiene invertido mucho códi...
    En estoc

    24,95 €

  • DEEP LEARNING TEORIA Y APLICACIONES
    LOPEZ SOTELO JESUS ALFONSO
    Deep Learning es, en gran medida, el causante de la revolución actual en el campo de la inteligencia artificial. Podría parecer una tecnología nueva, sin embargo, es esencialmente la evolución de lasredes neuronales artificiales, que tienen más de 60 años en el área de la inteligencia artificial. ...
    En estoc

    14,80 €

  • MICRO:BIT. ¿CÓMO ENRIQUECER LAS EXPERIENCIAS DE APRENDIZAJE?
    ROCCA ANDREA
    Estar al corriente de las últimas tendencias tecnológicas es esencial para todo docente que quiera obtener resultados fructíferos en el aula. En este libro se presenta la placa programable micro:bit y su moderna implementación en el aula mediante el ABP (aprendizaje basado en proyectos). Se aleja de la enseñanza clásica, en la que la teoría abarcaba todo el plan de estudios, pa...
    En estoc

    12,80 €

  • APRENDER VISUAL BASIC PARA APLICACIONES EN EXCEL CON 100 EJERCICIOS PRACTICOS
    GOMEZ GUTIERREZ JUAN ANTONIO
    Visual Basic for Applications (VBA) es el lenguaje de programación ideal para automatizar tareas repetitivas con macros y dar una mayor funcionalidad a los libros de Excel. Si quiere descubrir todas las soluciones que pueden aplicarse a los diferentes problemas con los que se puede encontrar como usuario de Excel, ha llegado al libro indicado. VBA ejecuta de forma sencilla y r...
    En estoc

    21,90 €